top of page

Journal Publications 

​

Papers published in international periodicals covered by SCI​

  • RecepoÄŸlu, Y. K., Arar, Ö., Yüksel, A. (2024). Breakthrough Curve Analysis of Phosphorylated Hazelnut Shell Waste in Column Operation for Continuous Harvesting of Lithium from Water. Journal of Chromatography A, 1713, 464510, https://doi.org/10.1016/j.chroma.2023.464510

  • Öcal, B., & Yüksel, A. (2023). Liquefaction of Oak Wood Using Various Solvents for Bio-oil Production. ACS Omega, 8, 40944-40959. https://doi.org/10.1021/acsomega.3c06419

  • AltınbaÅŸ, B. F., & Yüksel, A. (2023). Synthesis of a novel cellulose-based adsorbent from            olive tree pruning waste for removal of boron from aqueous solution. Biomass      Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-023-04147-3

  • Orak, C., Öcal, B., & Yüksel, A. (2023). Treatment of Sugar Industry Wastewater by Using         Subcritical Water as a Reaction Media. ChemistrySelect, 8(1), e202203300.   https://doi.org/https://doi.org/10.1002/slct.202203300

  • AltınbaÅŸ, B. F., Orak, C., Ökten, H. E., & Yüksel, A. (2022). Novel Hybrid Adsorption-   Electrodialysis (AdED) System for Removal of Boron from Geothermal Brine. ACS Omega, 7(49), 45422–45431. https://doi.org/10.1021/acsomega.2c06046

  • Orak, C., & Yüksel, A. (2022b). Box–Behnken Design for Hydrogen Evolution from Sugar         Industry Wastewater Using Solar-Driven Hybrid Catalysts. ACS Omega, 7(46), 42489–           42498. https://doi.org/10.1021/acsomega.2c05721

  • RecepoÄŸlu, Y. K., & Yüksel, A. (2022). Cross-Linked Phosphorylated Cellulose as a        Potential Sorbent for Lithium Extraction from Water: Dynamic Column Studies and            Modeling. ACS Omega, 7(43),38957–38968. https://doi.org/10.1021/acsomega.2c04712

  • Mott, A., Baba, A., Hadi Mosleh, M., Ökten, H. E., Babaei, M., Gören, A. Y., Feng, C.,    RecepoÄŸlu, Y. K., Uzelli, T., Uytun, H., Morata, D., Yüksel, A., & Sedighi, M. (2022).     Boron in geothermal energy: Sources, environmental impacts, and management in            geothermal fluid. Renewable and Sustainable Energy Reviews, 167, 112825. https://doi.org/10.1016/J.RSER.2022.112825

  • Nampeera, J., RecepoÄŸlu, Y. K., & Yuksel, A. (2022). Valorization of olive tree pruning waste for potential utilization in lithium recovery from aqueous solutions. Biomass    Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02647-2

  • Orak, C., & Yüksel, A. (2022a). Comparison of photocatalytic performances of solar-driven        hybrid catalysts for hydrogen energy evolution from 1,8–Diazabicyclo[5.4.0]undec-7-ene     (DBU) solution. International Journal of Hydrogen Energy, 47(14), 8841–8857. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.12.254

  • Orak, C., Sapmaz, A., & ÖzÅŸen, A. Y. (2022). Selective catalytic hydrogenation of cellulose        into sorbitol with Ru-based catalysts. Turkish Journal of Chemistry, 46(2), 434–445. https://doi.org/10.55730/1300-0527.3318

  • Orak, C., & Yüksel, A. (2021b). Photocatalytic Hydrogen Energy Evolution from Sugar Beet      Wastewater. ChemistrySelect, 6(43), 12266–12275. https://doi.org/https://doi.org/10.1002/slct.202103342

  • RecepoÄŸlu, Y. K., & Yüksel, A. (2021). Phosphorylated hazelnut shell waste for sustainable        lithium recovery application as biosorbent. Cellulose, 28(15), 9837–9855.           https://doi.org/10.1007/s10570-021-04148-3

  • Orak, C., & Yüksel, A. (2021a). Graphene-supported LaFeO3 for photocatalytic hydrogen           energy production. International Journal of Energy Research, 45(9), 12898–12914. https://doi.org/https://doi.org/10.1002/er.6620

  • RecepoÄŸlu, Y. K., & Yüksel, A. (2021). Synthesis, Characterization and Adsorption Studies        of Phosphorylated Cellulose for the Recovery of Lithium from Aqueous Solutions.      Cellulose Chemistry and Technology, 55, 385–401.

  • Orak, C., & Yüksel ÖzÅŸen, A. (2020). Electrolytic Oxidation of 1,8-          Diazabicyclo[5.4.0]undec-7-ene in Hot-Compressed Water on a Titanium Electrode.    Industrial & Engineering Chemistry Research, 59(43), 19153–19161.        https://doi.org/10.1021/acs.iecr.0c02562

  • Yüksel ÖzÅŸen, A. (2020). Conversion of Biomass to Organic Acids by Liquefaction         Reactions        Under Subcritical Conditions. In Frontiers in Chemistry   (Vol. 8).           https://www.frontiersin.org/articles/10.3389/fchem.2020.00024

  • Demirkaya, E., Dal, O., & Yüksel, A. (2019). Liquefaction of waste hazelnut shell by using         sub- and supercritical solvents as a reaction medium. The Journal of Supercritical Fluids,           150, 11–20. https://doi.org/https://doi.org/10.1016/j.supflu.2019.03.019

  • Ersanli, Ç., & ÖzÅŸen, A. Y. (2019). Mineralization of olive mill wastewater under            hydrothermal conditions. Desalination and Water Treatment, 147, 143–155.       https://doi.org/10.5004/dwt.2019.23758

  • Akin, O., & Yuksel, A. (2019). Novel hybrid process for the conversion of microcrystalline         cellulose to value-added chemicals: part 3: detailed reaction pathway. Cellulose, 26(5), 2999–3008. https://doi.org/10.1007/s10570-019-02291-6

  • Akin, O., & Yuksel, A. (2017). Novel hybrid process for the conversion of microcrystalline         cellulose to value-added chemicals: part 2: effect of constant voltage on product           selectivity. Cellulose, 24(11), 4729–4741. https://doi.org/10.1007/s10570-017-1457-9

  • Gozaydin, G., & Yuksel, A. (2017). Valorization of hazelnut shell waste in hot compressed         water. Fuel Processing Technology, 166, 96–106. https://doi.org/10.1016/j.fuproc.2017.05.034

  • Akin, O., & Yuksel, A. (2016). Novel hybrid process for the conversion of microcrystalline         cellulose to value-added chemicals: part 1: process optimization. Cellulose, 23(6), 3475– 3493. https://doi.org/10.1007/s10570-016-1054-3

  • Yuksel, A., Sasaki, M., & Goto, M. (2011b). Complete degradation of Orange G by         electrolysis in sub-critical water. Journal of Hazardous Materials, 190(1), 1058–1062.           https://doi.org/https://doi.org/10.1016/j.jhazmat.2011.02.083

  • Yuksel, A., Sasaki, M., & Goto, M. (2011a). A new green technology: hydrothermal        electrolysis for the treatment of biodiesel wastewater. Research on Chemical            Intermediates, 37(2), 131–143. https://doi.org/10.1007/s11164-011-0260-8

  • Yuksel, A., Sasaki, M., & Goto, M. (2011c). Electrolysis Reaction Pathway for Lactic Acid         in Subcritical Water. Industrial & Engineering Chemistry Research, 50(2), 728–734. https://doi.org/10.1021/ie101839r

  • Sasaki, M., Wahyudiono, Yuksel, A., & Goto, M. (2010). Applications of hydrothermal   electrolysis for conversion of 1-butanol in wastewater treatment. Fuel Processing     Technology, 91(9), 1125–1132.

  • Yuksel, A., Koga, H., Sasaki, M., & Goto, M. (2010). Hydrothermal Electrolysis of          Glycerol Using a Continuous Flow Reactor. Industrial & Engineering Chemistry           Research, 49(4), 1520–1525. https://doi.org/10.1021/ie9016418

  • Yuksel, A., Koga, H., Sasaki, M., & Goto, M. (2009). Electrolysis of glycerol in subcritical         water. Journal of Renewable and Sustainable Energy, 1(3), 33112.   https://doi.org/10.1063/1.3156006

  • Papers published in (inter)national periodicals covered by other indexes

  • RecepoÄŸlu, Y. K., GümüÅŸbulut, G., & Yuksel, A. (2023). A Comparative Assessment for Efficient Oleuropein Extraction from Olive Leaf (Olea europaea L. folium). Turkish Journal of Engineering, Volume 7 , Issue 2, pp. 116-124  Doi: 10.31127/tuje.1058500

  • Dal, O., Åžengün, D., & Yuksel, A. (2020). Ultrasound Assisted Extraction for the Recovery         of Phenolic Compounds from Waste Hazelnut Shell. Environmental Research &     Technology, Volume 3, Issue 3, pp. 135- 146 (doi:10.35208/ert.763459)

  • Yuksel, A. (2016). Hydrothermal Treatment of Cellulose in Hot-Pressurized Water for the           Production of Levulinic Acid. Uludag University Journal of the Faculty of Engineering.         Volume 21, Issue 2, pp. 415- 434 (doi:10.17482/uumfd.278150)

  • Yuksel, A. (2013). Hydrothermal Degradation of Congo Red in Hot Compressed Water and        its Kinetics. Journal of Chemical Engineering & Process Technology. Volume 4, Issue 9,      pp. 179- 188

​

 

bottom of page